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This guide has been adapted from an undergraduate topic on Attention and the 

brain, part of a Level 2 module on Practical science (S288). You will find out why 

statistical tests are important for assessing data gathered through experimental 

research, and also the limitations of such methods. 
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1  Beyond reasonable doubt 

If you have been carrying out investigations you may have been studying 

differences between conditions or groups. However, a simple difference in 

experiment performance results between two conditions is not enough by itself to 

draw conclusions. The question you need to ask is whether those differences are 

reliable. That is; they are likely to occur again if the experiment was repeated.  

Anyone who plays or watches sport, or listens to live music, knows that an 

individual’s performance varies day by day. Similarly, in an experiment, the 

performance of participants (human or otherwise) varies each time the experimental 

task is run, and this occurs irrespective of any change in the independent variable. 

There are also profound individual differences between participants purely in terms 

of their basic abilities on experimental tasks. This is the case in animals as well as 

humans. Thus, even where participants are allocated to conditions randomly (if 

they can be) in an experiment, and tested in the absence of the independent 

variable, it would be unreasonable to expect exactly the same scores on the 

dependent variable by the participants in each condition.  

What this means in practice is that the scores of participants in one condition will 

naturally differ from the scores of participants in another condition, irrespective of 

any effect of the independent variable.  

Let’s consider an example. Your duration of sleep is probably different from one 

night to the next. This random or chance fluctuation in performance goes on 

continuously. Now imagine you are interested in determining the effect on sleep 

duration of having a malted drink at bedtime. For your experimental results to be 

meaningful you would need to distinguish between any difference in the duration of 

your sleep (the dependent variable) that was due to the malted drink (the 

independent variable), and any variation that was due to chance fluctuation.  

It always happens that we assess the effects of the independent variable against a 

background of inherent variation in performance of the dependent variable. This is 

the ‘doubt’ in the title to this section: that maybe the independent variable had no 

effect whatsoever on the dependent variable, and the results of the experiment are 

just chance fluctuation. To get beyond this element of doubt and to demonstrate a 

relationship between two events, the effect of the independent variable on the 

dependent variable has to be over and above chance fluctuation. This is where 

statistical analysis comes in.  

This guide briefly discusses the idea of how all variation in data can be observed 

and analysed statistically in order to gauge the independent variable’s effect on the 

dependent variable. It then focuses specifically on a statistical test called a ‘t-test’, 

which gauges whether differences in the dependent variable for two conditions are 

over and above that which would be expected due to natural random fluctuation, 

and shows you how to perform such an analysis using some calculative software 

available for this unit. 
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2  Examining distribution of 

experimental data 

There is no great need to understand in detail the mathematics behind any particular 

statistical test, just as there is no need to understand how a word processor works, 

so long as you can use it appropriately. However, it is helpful to be able to visualise 

what the statistical tests are doing, and that is the purpose of this section. 

Graphical interpretation of frequency data 

A useful starting point for thinking about statistical analysis and t-tests is what we 

call the ‘normal distribution’. To illustrate this idea, imagine that 2100 adults were 

asked how many hours they slept each night. The results are shown in Figure 1. 

The variable measured (sleep duration) is plotted on the horizontal axis. The 

number of people stating a particular sleep duration, or, put another way, the 

frequency with which a particular sleep duration was stated, is plotted on the 

vertical axis. The resulting plot is a therefore known as a frequency distribution 

graph. 

 

Figure 1  Daily sleep duration in hours as reported by a sample of 2100 adults 

The graph shows clearly what you might have predicted: most people sleep 

between seven and eight hours each night; very few people sleep for less than 

four hours or more than ten hours. The shape of this graph, with few observations 

at either extreme of the sleep-duration scale and the bulk of observations in the 

middle of the range of results, is characteristic of a normal distribution. 

The classic normal distribution is shown in Figure 2 for comparison. Note in 

particular that it is symmetrical about the midpoint on the horizontal axis (the 

vertical dashed line on the graph). The midpoint is the mean or average value of 

hours that participants reported sleeping for. 
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Figure 2  The classic normal distribution 

This normal distribution can be used in two main ways. First, it can be used to 

identify and define observed values that are extreme or abnormal. 

• Question: Which mathematical way of describing the spread of values 

should be used in conjunction with the mean? 

• Answer: The standard deviation  

In a normal distribution, 95% of the observed values lie within 1.96 standard 

deviations on either side of the mean. (For simplicity, 1.96 is usually rounded up to 

2.) Put another way, this means that only 5% of the observed values are more than 

two standard deviations above or below the mean. 

• Question: Why has the phrase ‘above or below’ been included in the 

previous sentence? 

• Answer: Because the normal distribution is symmetrical, extreme 

values can be either higher or lower than the mean. 

• Question: What percentage of observed values are two standard 

deviations below the mean? 

• Answer: There are 2.5% of observed values two standard deviations 

below the mean. Likewise there are 2.5% of observed values two standard 

deviations above the mean, giving a total of 5% above or below that value 

overall. 

Any value that is above or below the mean by more than two standard deviations is, 

by convention, defined as being abnormal.  
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The normal distribution can be used to compare data from two conditions. It is this 

comparison that is at the heart of a number of statistical tests, often referred to as 

parametric tests. The t-test is one such parametric test.  

For example, imagine three experiments, 1, 2 and 3, each consisting of two 

conditions, A and B, in which reaction time is measured in 2000 participants. The 

results from each experiment are plotted in Figures 3a, b and c. 

 

Figure 3  Hypothetical results from Experiments 1, 2 and 3 

In Experiment 1 the data from participants in Condition B virtually match those 

from Condition A; the frequency distributions almost totally overlap (Figure 3a). It 

is obvious that there is virtually no difference between the conditions; the 

independent variable therefore had no obvious effect.  

In Experiment 2, the data from participants in Condition B are totally different from 

those of participants in Condition A; the frequency distributions do not overlap at 

all (Figure 3b). Clearly, there is a difference between the conditions; the 

independent variable therefore had a very marked effect on the performance of 

participants in Condition B.  

While results do occasionally fit the patterns shown in Experiments 1 and 2, the 

usual pattern is that depicted by Experiment 3. Here, there is overlap between the 

data from the two conditions (Figure 3c). Condition B data appear to have a slightly 

higher mean value for the dependent variable, but the effect of the independent 

variable on the performance of the participants is small. The question is, are the 

data from the two conditions really different because of the effect of the 
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independent variable in the experiment, or is the difference just due to chance 

variation? 

Working with data on a smaller scale 

Now that you can visualise the problem of distinguishing between results due to 

chance variation and those due to a real effect of the independent variable, we can 

consider the more usual situation in experiments, where the sample is not 

thousands, but perhaps just tens of participants. In this situation there are relatively 

few data points; and it simply is not possible to plot a meaningful frequency 

distribution graph. This does not matter, however. As long as it is sensible to 

calculate a mean and a standard deviation from the data then that defines what the 

frequency distribution would look like, were you to plot it, and is also sufficient for 

statistical purposes.  

Consider the data in Table 1, which derives from an experiment in which positive 

air pressure was used to affect the duration of deep sleep. You do not have to 

concern yourself with details of the experiment from which the data were derived, 

other than the fact there were two conditions: C1 in which treatment was not given, 

and C2 in which air-pressure treatment was given. 

• Question: Which is the control, and which the experimental condition 

in this experiment? 

• Answer: C1 is the control condition and C2 is the experimental 

condition. 

Table 1  Duration of sleep (in minutes) of participants with breathing 

difficulties 

Participant 

rank    

Condition C1 

deep sleep/min    

Participant 

rank    

Condition C2 

deep sleep/min    

1 1.8 1 1.9 

2 1.9 2 3.1 

3 2.1 3 3.6 

4 2.2 4 4.7 

5 2.4 5 5.2 

6 2.4 6 5.9 

7 2.6 7 6.4 

8 2.6 8 9.8 

9 2.6 9 11.3 

10 3.2 10 11.4 

11 3.3 11 11.9 

12 3.5 12 12.5 

13 3.8 13 16.4 

14 4.0 14 16.5 
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Participant 

rank    

Condition C1 

deep sleep/min    

Participant 

rank    

Condition C2 

deep sleep/min    

15 4.1 15 16.8 

16 5.1 16 17.7 

17 5.7 17 19.4 

18 6.1 18 24.6 

19 8.9 19 28.4 

20 9.1 20 41.1 

21 9.2 21 43.7 

22 10.3 22 46.4 

23 10.6 23 52.9 

24 12.1 24 73.2 

25 13.3 25 125.0 

26 42.5 26 158.2 

27 59.6 27 174.3 

You could suggest the following from looking at these data: 

• Some participants in condition C1 – who had no treatment – spent longer in 

deep sleep than many participants in condition C2 – who did receive the 

treatment. Participant 22 (C1) spent longer in deep sleep than Participants 1, 

2, 3, 4, 5, 6, 7 and 8 (C2) for instance. 

• The shortest period of deep sleep in the two conditions was very similar: 

1.8 minutes versus 1.9 minutes. 

• More participants in C2 spent longer in deep sleep. Only six participants in 

C1 exceeded ten minutes of deep sleep, compared with 19 participants in 

C2. 

The null hypothesis for this experiment would predict no significant difference in 

deep-sleep duration between those participants in the experimental and control 

conditions. In other words, the difference in the overall range of deep-sleep 

duration across the two conditions could have arisen by chance. Statistical tests 

provide a way of assessing how likely this is. 

3  Probability in statistics 

Statistical tests are a mathematical way of calculating precisely how likely it is that 

a particular experimental result arose by chance. Two general points are very 

important when considering such tests and you should bear them in mind. 

• First, statistics never produce definite answers; they deal with probability 

rather than certainty. Indeed, you will never know whether a particular set 

of results actually arose by chance or not; you will only know the 

probability that they arose by chance. 
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• Second, statistical logic asks how likely it is that the results arose by chance, 

or, more perversely, how likely it is that there is no effect of the 

independent variable. 

In other words, statistical inference is based on the null hypothesis, not the 

experimental hypothesis. Specifically, this kind of statistical testing works out the 

likelihood of your result if the null hypothesis is true (i.e. if there is no effect). We 

then simply define reliable effects as those that are sufficiently unlikely if the null 

hypothesis is true. 

Consider the hypothetical sleep experiment mentioned in Section 1, which was 

interested in investigating whether a bedtime malted drink affects the duration of 

sleep. Now, to think about what the statistics are going to do, suppose the drink has 

no actual effect on the test condition (i.e. those that did have it before bed). 

• Question: What kind of result would you expect from the two 

conditions in this experiment if this was the case? 

• Answer: You would expect the results under the two conditions to be 

very similar. That is; the frequency distributions from each condition would 

look almost identical. 

If the actual data in the two conditions are similar, the results could well have 

arisen by chance, and the null hypothesis is accepted. If the actual data in the two 

conditions are dissimilar (i.e. the result probably did not arise by chance) then you 

can reject the null hypothesis. In order to infer how similar or dissimilar the results 

from the two conditions are you must calculate the probability that the results arose 

by chance. 

Expressing probabilities in statistical tests 

Probabilities in statistical tests are expressed as ‘p values’. These give the 

probability that the data put into the statistical test arose by chance. A p value of 1 

means that it is an absolute certainty that the results arose by chance, and a p value 

of 0 means that it is impossible that the results arose by chance.  

In practice, p values of 1 or 0 are very rare, but the nearer the p value is to 0, the 

less likely the results are to have arisen by chance. For example, if p = 0.001 then 

there is only a one-in-one-thousand probability that the results arose by chance. 

Such a result would mean the null hypothesis could be rejected, leaving the 

experimental hypothesis to explain the data.  

In many sciences it is customary to say that p has to be less than 0.05 before the 

null hypothesis can be rejected. When p = 0.05, there is a one-in-twenty probability 

that the results arose by chance, and when the value is less than this the result is 

said to be statistically reliable (or statistically significant). 

There is no mathematical or logical reason why 0.05 is chosen as the cut-off point 

for rejecting a null hypothesis, and indeed some experimenters prefer the value of 

0.01. Historically, though, p < 0.05 has come to be accepted as a reasonable 
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threshold level of reliability. Actual levels of probability are usually quoted in 

research papers, allowing the reader to apply their own level of reliability in 

evaluating the results.  

3.1  Limitations of statistical analysis 

So far we have identified a number of ways that statistical analysis can help you to 

determine the likelihood that variation in a dependent variable is caused by the 

effect of the independent variable rather than by chance. This is obviously a very 

useful thing to be able to make a judgement on, but statistical tests are not without 

their limitations, too. 

One thing to remember about your analyses is that statistical procedures only deal 

with the numbers fed into them: they do not know the meaning of the numbers. A 

statistical test will churn around any set of numbers fed in using a suitable format, 

and the delivery of a statistic at the end of this process does not sanctify the data. 

Just because the data were analysed does not mean that either the analysis itself, or 

its outcome, was meaningful.  

Also, bear in mind that rejecting the null hypothesis does not automatically mean 

that the results went in the direction that you predicted (for example that one group 

performed better than the other one). Therefore you still need to spend time looking 

at your data to think about what the results mean. Get into the habit of describing 

your data carefully (was the mean value for one group larger than that for the 

other?) and thinking about what the outcome of your analyses might mean in terms 

of the original question your experiment set out to answer. A good experimental 

report will always spend lots of time considering what the data show in relation to 

the original experimental question. 

You should now work though the guide provided below on The Student’s t-test and 

how to use the accompanying software. 

4  The Student’s t-test 

The Student’s t-test is a robust, well-documented test that compares the means of 

two sets of data. The end result of the test is a single value of ‘t’, which is a 

measure of the extent to which the two sets of data overlap. Remember, where the 

data extensively overlap, the independent variable had little effect on the 

participants. This is the case if t is small. If t is large, the two sets of data only 

partially overlap which means that the independent variable had a (mathematically) 

noticeable effect on the participants. Put another way: 

• If t is small, the null hypothesis (of no difference between the participants’ 

performance in the two conditions) is accepted. 

• If t is large, the null hypothesis is rejected. 

Specific values of t are converted into a probability, so that the rather vague phrases 

about extensive and partial overlap used above become actual numbers, albeit still 
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only probabilities. The computation of t is usually left to computer software 

packages; one such multimedia package is the t-test calculator available in The 

OpenScience Lab.  

Requirements for doing a t-test 

One value that must be known before you can apply a statistical test is the number 

of degrees of freedom. Degrees of freedom is an important, if elusive, mathematical 

term and usually its numerical value is one less than the number of participants in 

each condition and this is the method of calculation you will use here.  

Degrees of freedom are a measure of how many items in a set of data need to be 

specified before all the items in that set are known. For example if, in a two-

participant trial, the mean score is 25, and you know that Participant 2 scored 18, 

then Participant 1 must have scored 32 because no other value would give a mean 

for the two participants of 25. This trial therefore has 1 degree of freedom (2 –

 1 = 1). In the case of an experiment that has two groups and the participants in 

each group are different, the degrees of freedom are calculated for each group as 

reported above, and then added together. As an example, consider an experiment 

which has seven participants in Group A and eight participants in Group B. In this 

case the degrees of freedom would be (7–1) + (8–1) = 13. 

When running the t-test calculator software the results that need to be reported are 

the degrees of freedom, the value of t, and the p value calculated by the test. Here is 

a fictitious example. Let’s imagine an experiment had 24 participants in each 

group. The degrees of freedom are therefore (24–1) + (24–1) = 46. The researcher 

calculates a t value from the data and the value returned by the calculator is 2.36. 

They also deduce a p value of 0.003. The researcher should then report these results 

in either of the following formats: 

t(46) = 2.36, p = 0.003 

or 

t(46) = 2.36, p<0.05 

The number in brackets is the degrees of freedom in the investigation, the value 

after the first equal sign is the value of t and the number after the second equal sign 

is the value of p. In the next section we discuss specifically how to use the 

Student’s t-test calculator provided in The OpenScience Laboratory in order to 

obtain such values for your investigations. Note that you may need to run several 

different t-tests in an investigation; one for each measure that you have chosen to 

record. 

4.1  Using the t-test calculator 

The t-test calculator that you will need to use can be accessed from the following 

link: 
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• Click here to access the t-test calculator software 

It can also be accessed from The OpenScience Laboratory 

www.opensciencelab.ac.uk. Below are some screenshots taken from the t-test 

calculator. 

The opening screen tells you that it is possible to use the t-test calculator: 

• If you want to test for differences in population means 

• Provided that your measurements are at the interval level 

• Provided that your measurements can be assumed to come from  normally 

distributed populations. 

You should first check if your data meets these requirements before proceeding to 

entering your experimental data by clicking on the ‘Data’ tab. Figure 4 shows you 

how to do this. 

 

Figure 4  Entering data in to the t-test calculator 

Once you have entered your data you need to click on the ‘t test’ tab and note your 

degrees of freedom. Recall that these are calculated as one less than the number of 
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participants in each condition. So if you had eight participants in one condition and 

seven in another your degrees of freedom would be 13 (as shown on the screen shot 

example in Figure 5). 

 

Figure 5  Recording your degrees of freedom 

Next you need to decide what your critical value of p will be, and this information 

is found on the ‘Significance’ tab. As you can see in Figure 6, a value of 0.05 has 

been suggested, but you can amend this if you wish. Once you have decided on this 

value you then need to calculate your critical value of t using Table 2, and enter this 

value into the t-test calculator as shown in Figure 6.  

Experimental hypotheses can take two forms: they can be directional (also called 

‘one-tailed’), predicting an effect in a particular direction, or they can be bi-

directional (or ‘two-tailed’), simply predicting that there will be a difference 

between the experimental and the control condition, but not specifying what the 

effect will be. 
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Figure 6  Entering your critical values of p and t 

Table 2  Critical Values of t 

Probability p Directional 0.05    0.025    0.005    0.0005    

 Bi-directional       0.05 0.01 0.001 

Degree of freedom           

4  2.13 2.78 4.60 8.61 

5  2.02 2.57 4.03 6.87 

6  1.94 2.45 3.71 5.96 

7  1.89 2.36 3.50 5.41 

8  1.86 2.31 3.36 5.04 

9  1.83 2.26 3.25 4.78 

10  1.81 2.23 3.17 4.59 

11  1.80 2.20 3.11 4.44 

12  1.78 2.18 3.05 4.32 

13  1.77 2.16 3.01 4.22 

14  1.76 2.14 2.98 4.1 

15  1.75 2.13 2.95 4.07 

16  1.75 2.12 2.92 4.01 

17  1.74 2.11 2.90 3.97 

18  1.73 2.10 2.88 3.92 

19  1.73 2.09 2.86 3.88 

20  1.72 2.09 2.85 3.85 

21  1.72 2.08 2.83 3.82 
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Probability p Directional 0.05    0.025    0.005    0.0005    

22  1.72 2.07 2.82 3.79 

23  1.71 2.07 2.81 3.77 

24  1.71 2.06 2.80 3.75 

25  1.71 2.06 2.79 3.73 

26  1.71 2.06 2.78 3.71 

27  1.70 2.05 2.77 3.69 

28  1.70 2.05 2.76 3.67 

29  1.70 2.05 2.76 3.66 

30  1.70 2.04 2.75 3.65 

35  1.69 2.03 2.72 3.59 

40  1.68 2.02 2.70 3.55 

45  1.68 2.01 2.69 3.52 

50  1.68 2.01 2.68 3.50 

55  1.67 2.00 2.67 3.48 

60  1.67 2.00 2.66 3.46  

65  1.67 2.00 2.65 3.45 

70  1.67 1.99 2.65 3.43 

75  1.67 1.99 2.64 3.42 

80  1.66 1.99 2.64 3.42 

85  1.66 1.99 2.63 3.41 

90  1.66 1.99 2.63 3.40 

95  1.66 1.99 2.63 3.40 

100  1.66 1.98 2.63 3.39 

Once you have entered the relevant values you can click on the ‘Enter’ button on 

your computer and the t-test will run its calculation and show you whether the null 

hypothesis can be rejected (Figure 7) on the grounds of statistical reliability. 
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Figure 7  Deciding if the null hypothesis can be rejected 

Finally you should go to the ‘Mean and variance’ tab and note down the calculated 

values of the means and variance from the t-test calculator, and use the variance to 

work out what your standard deviations are (Figure 8). 

Figure 8  Working out your group means and standard deviations 
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You must piece all of this information together for each measure in your 

investigations in order to reach a suitable conclusion on your original experimental 

question. Can the null hypothesis be accepted or rejected?  

5  Summary 

The following list recaps the main points made in this guide: 

• The data obtained from participants in one condition of an experiment are 

usually not completely different from those obtained from participants in 

another condition: the data are said to overlap. 

• Provided it is sensible to calculate a mean and standard deviation, then it is 

possible to carry out a statistical test to establish the probability that the data 

from the two conditions came from the same population. 

• If the calculated probability is small, then the data probably came from 

different populations; a reliable difference has been established. 

• The low probability also means that the null hypothesis can be rejected. 

• Conversely, if the calculated probability is large, then the data probably did 

not come from different populations and a reliable difference cannot be 

established. 

• A high probability also means the null hypothesis cannot be rejected. 

• Any outcome should always be interpreted alongside the observed pattern of 

the data obtained to establish what this means in the context of the original 

experimental question. 


